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Abstract. The relative escape rate (RER) for Brownian particles in an asymmetric bistable sawtooth
potential driven by cross correlations between multiplicative white noise and additive white noise is studied.
A new expression of the mean first-passage time is derived under the condition of piecewise linear potentials
and discontinuous diffusion function. Based on the results of RER numerically calculated, it is found that
(i) under positively correlated noises action (i.e. λ > 0, and λ is the correlation strength), the escape rate
exhibits the suppression platform as the intensity of multiplicative noise varies. The effect of suppression
becomes more pronounced with the growth of height of the deterministic potential barrier for transition,
and with the increase of λ. However, for the case of uncorrelated noises (λ = 0) and of negatively correlated
noises (λ < 0), the suppression platform disappears. (ii) The positive correlation between noises amplifies
the change of the escape rate with the height of barrier for transition, while the negative correlation
between noises suppresses this change.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The study of the escape problem of Brownian particles has
attracted a great deal of interests for many years, because
the escape time is of physical importance to character-
ize the dynamics of a system driven by noises. Resonant
activation, giant suppression and some novel phenomena
were found [1–6]. Since Fulinski and Telejko in 1991 pro-
posed the idea of cross-correlation between additive and
multiplicative noises [7], the effects of the cross-correlated
noises on the dynamics of systems have been paid much
attention, and this ideal of the cross-correlated noises has
been generalized to the other subjects of stochastic sys-
tems such as stochastic resonance [8–10].

Recently, Jia et al. [11] studied the effects of corre-
lated additive and multiplicative noises on the mean first-
passage time (MFPT) of the symmetric bistable potential
model,

V (x) = −x
2

2
+
x4

4
,

for the case of zero correlation time. It was found that
the MFPT is affected by the correlation strength λ. In
the presence of perfectly correlated noises (λ = 1), MFPT
corresponding to α > D and α < D (α and D stands for
the strengths of additive and multiplicative noises respec-
tively) exhibits very different behaviors, and the MFPT
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for α = D diverges to infinity [11]. Mei et al. [12] examined
the MFPT of the same model for the case of nonzero cor-
relation time. It was showed that τ (the correlation time)
and λ play opposing roles in the MFPT and the MFPT as
a function of τ is nonmonotonic [12]. Madureira et al. [2]
proved that in the same potential, as a function of the
correlation strength between additive and multiplicative
noise sources the activate rate (defined as the inverse of the
MFPT) can be suppressed by order of magnitude [2]. The
potential application of a bistable model subject to cor-
related noises is given by the switching of magnetization
in single-domain ferromagnetic particles, in which exter-
nal and internal magnetic field fluctuations are generally
correlated and mutually influence the bistable relaxation
dynamics of the magnetic moment [2]. However, previous
works were only concerned with the symmetric bistable
potential model. A natural question turns up, that is in
an asymmetric bistable potential the effects of correlation
between noises on the escape for Brownian particles.

In the present paper, the escape rate of Brownian par-
ticles in an asymmetric sawtooth potential coupled to cor-
related multiplicative and additive white noises is inves-
tigated. Our main aim is, by this exact soluble model, to
exhibit the impact of correlated noises on the escape rate
for the case of an asymmetric bistable potential. In Sec-
tion 2, a new expression of the mean first-passage time is
derived under the condition of piecewise linear potentials
and an exact analytic expressions of the relative rate is
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derived. A discussion of the results concludes the paper in
Section 3.

2 MFPT of an asymmetric bistable sawtooth
potential

We consider an exact soluble model, i.e. an asymmetric
bistable sawtooth system with with two cross-correlated
zero-mean Gaussian noises. The corresponding Langevin
equation reads

ẋ = −ϕ′(x) + u(x)p(t) + q(t), (1)

here p(t) and q(t) are Gaussian white noises with

〈q(t)〉 = 〈p(t)〉 = 0, (2a)

〈q(t)q(t′)〉 = 2Dδ(t− t′), (2b)

〈p(t)p(t′)〉 = 2Qδ(t− t′), (2c)

and

〈q(t)p(t′)〉 = 〈p(t)q(t′)〉 = 2λ
√
DQδ(t− t′), (2d)

in which Q stands for the strength of the multiplicative
noise p(t). D is the strength of the additive noise q(t) and
λmeasures the degree of correlation between p(t) and q(t).
The potential function ϕ(x) is given by
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From the deterministic point of view, the stable steady
states correspond to minima of the potential function, and
the unstable ones correspond to maxima of the potential
function. One finds two stable steady states, located at
x1 = −L/2 + ε, x2 = L/2 + ε respectively. The unstable
state is located at x0 = 2ε. Obviously, when ε = 0, ϕ(x)
is just a symmetric bistable potential. When ε �= 0, ϕ1 =
ϕ(x1) = −b − 2bε/L. ϕ2 = ϕ(x2) = −b + 2bε/L. The
potential difference of the two well ∆ϕ = −4bε/L exists
and ϕ(x) is an asymmetric bistable potential. Increasing
ε means that the height of the barrier for transition from
x1 to x2, −ϕ1, grows high.

The Fokker-planck equation associated with equa-
tions (1, 2) can be written as Fox’s equation for the prob-
ability distribution [13] in the limit of correlation times
going to zero

∂tW (x, t) = −∂xA(x)W (x, t) + ∂2
xh

2(x)W (x, t), (4)

with
A(x) = −ϕ′(x) + h(x)h′(x), (5)

and

h(x) =
[
Qu2(x) + 2λ

√
QDu(x) +D

]1/2

. (6)

Equations (4–6) can also readily obtained using the
method in reference [14].

In essence, from the forward FPF, equation (4),the
backward FPE can be obtained, and then the MFPT equa-
tion of T is derived [15]

A(x)∂xT (x) + h2(x)∂2
xT (x) = −1. (7)

For the sake of mathematical simplicity, assume the
coefficient of the multiplicative noise has the following
form [16]

u(x) =
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2
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2
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2
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(8)

We note the fact that the potential function described
by (3) is piecewise smooth and that the diffusion coeffi-
cient h2(x) have a finite jump at piecewise points of the
function (3). Assume that T (x) should be continuous and
smooth, and under the reflective boundary at x = −∞ and
an absorbable boundary at x = x2, by solving equation (7)
we get the expression of the MFPT from x (x ≤ x1) to x2

T (x) =
∫ x1

x
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where

ψ(x) =
∫ x A(y)

h2(y)
dy. (10)

In equation (9), ϕ(x±) is abbreviated from lim
τ→0

ϕ(x±|τ |).
Note that if ϕ(x) and h(x) are continuous and smooth,
equation (9) reduces to the formula of MFPT given by
reference [17].

Consider now Brownian motion from the minimum of
the first well at x1 to the minimum of the second well
at x2. Using equation (9) with equation (8), we finally
obtain the MFPT

T (ε) = 2γDµ1

[
exp

(
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]
+ γ∆ϕ, (11)
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where γ = L2/4b2. µi are given by

µi =
Qc2 ± 2λc

√
QD +D

D
, (12)

in which i = 1 corresponds to + and i = 2 to −. When
the parameter ε=0, ϕ1=ϕ2=ϕ0 (symmetric potential), the
MFPT reduces to

T (0) = 2γDµ1
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For λ = 0, in the absence of correlation between additive
and multiplicative noises, µ1 = µ2 = µ and equation (11)
reduces to

Tλ=0 = 2γDµ
[
exp

(
−ϕ1µ

−1

D

)
− 1

]

×
[
2 − exp

(
ϕ2µ

−1

D

)]
+ γ∆ϕ. (13b)

When there only exists the additive noise, i.e., Q = 0,
inserting µ1 = µ2 = 1 in equation (11) we have

TQ=0 = 2Dγ
[
exp

(
−ϕ1

D

)
− 1

] [
2 − exp

(ϕ2

D

)]
+ γ∆ϕ. (13c)

Furthermore, we can get the relative escape rate

ν1 =
TQ=0

T (ε)
, (14a)

and the relative escape ν2 which is defined as

ν2 =
T (0)
T (ε)

(14b)

which may reflects the influence of the height alteration
of the barrier over which particles get on the escape rate.

3 Discussions and conclusions

To illustrate the effects of correlated noises on the escape
rate in an asymmetric bistable potential, the relative es-
cape rates, ν1 and ν2, are numerically calculated for dif-
ferent parameters.

As can be seen clearly from the Figure 1, when the
correlation between noises is positive (λ > 0), the relative
escape rates ν1 in an asymmetric (e.g. ε = 0.4, or − 0.4)
bistable potential exhibits one minimum value, namely
suppression effect. Increasing λ intensifies the suppres-
sion of escape rate. Also we see that the higher the de-
terministic barrier that particles cross is, the more in-
tense the suppression is (i.e. there is a more pronounced
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Fig. 1. Relative escape rate ν1 as a function of Q for the case
of λ ≥ 0. b = 0.25, c = 0.125, D = 0.1, L = 1. (a) ε = 0.4.
(b) ε = −0.4.

minimum value for large ε.). However, the suppression
phenomenon disappears whether under the uncorrelated
noises action(λ = 0, see Fig. 1), or the negatively corre-
lated noises action (λ < 0, see Fig. 2). From the physical
side, −ϕ1 is the height of the deterministic barrier for
transition from x1 to x2, and −ϕ1µ

−1
2 /D is the effective

barrier in the existence of noises. Thus the behaviors of
the escape rate mainly depends on the activation factor
exp(ϕ1µ

−1
2 /D), weakly depends on the depth of the sec-

ond well. We note that µ2 has a minimum (µ2m) which
is 1 − λ2 at Qc = λ2D/c2 when λ > 0. In particular,
when λ = 1 and Q = D/c2, µ2m equals to zero, so the
factor exp(ϕ1µ

−1
2 /D) approaches zero (since ϕ1 < 0),

and then the escape for particles cannot take place. This
coincides with the result (T = ∞) obtained from equa-
tion (11). Hence, if Q varies near Qc, the escape rate
is rather small, and so the suppression platform comes
about. When increasing λ and λ > 0, the height of the
effective barrier −ϕ1µ

−1
2m/D rapidly increases, the escape

rate is dramatically suppressed. Similarly, the escape rate
may drop to the lower point for larger ε because the fac-
tor exp(ϕ1µ

−1
2m/D) with large ε is smaller than that with

small ε.
For fixed ε and increasing Q, the influence of λ on µ1

and µ2 becomes weak and weak, and thus the ν1 tends to
the sameness, which is illustrated in Figures 1 and 2.

Not unexpectedly, the escape rate ν2 as a function of
ε decays as ε increases no matter what λ is, as can be
seen from Figure 3. This implies that particles always take
much more time to pass through a higher potential barrier.
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Fig. 2. Relative escape rate ν1 as a function of Q for the case
of λ < 0. b = 0.25, c = 0.125, D = 0.1, L = 1. (a) ε = 0.4.
(b) ε = −0.4.
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Fig. 3. Relative escape rate ν2 as a function of ε for the dif-
ferent values of λ. Q = 0.5. b = 0.25, c = 0.125, D = 0.1,
L = 1.

Figure 3 also shows that under the positively correlated
noises action, λ enlarges the effect caused by changing
the height of barrier over which particles surmount on the
escape rate, but λ suppresses the effect in the case with
negatively correlated noises (λ < 0), which can be more
clearly seen in the Figure 4.

Finally, we remark that for a general bistable potential
subject to correlated noises, the MFPT from one deter-
ministic steady-state to the other mainly depends on the
height of barrier for the transition in the effective potential
associated with force [2]

Dϕ(y)
h2(y)

=
Dϕ(x)

Qu2(x) + 2λ
√
QDu(x) +D

· (15)
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Fig. 4. Relative escape rate ν as a function of λ for the different
values of ε. Q = 0.5, b = 0.25, c = 0.125, D = 0.1 and L = 1.

Obviously, if the positive correlated noises make the de-
nominator of (15) decrease, the negative correlated noises
make it increase. Hence, λ > 0 and λ < 0 play opposing
roles on the effect caused by the height alteration of the
barrier for transition on the escape rate, even though the
coefficient of multiplicative noise u(x) is continuous.
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